ctfwriteup
  • ✅/home/ret2basic.eth
  • Game Hacking
    • 👑Pwn Adventure 3: Pwnie Island
      • ✅Prep: Speed Hack
      • ✅Prep: Infinite Health and Mana (Offline)
      • ✅Prep: Analyze Network Packets with Wireshark
      • Prep: Build a Proxy in Python
      • ✅Until the Cows Come Home
      • Unbearable Revenge
      • Pirate's Treasure
    • Cheat Engine Tutorial
      • ✅Step 1: Setup
      • ✅Step 2: Scan for "Exact Value"
      • ✅Step 3: Scan for "Unknown initial value"
      • ✅Step 4: Scan for float and double
      • ✅Step 5: Replace instruction
      • Step 6: Pointer scanning
      • Step 7: Code injection
      • Step 8: Multilevel pointers
      • Step 9: Shared code
  • Web3 CTF
    • 👑Remedy CTF 2025 (Todo)
      • Diamond Heist
      • R vs Q
      • Rich Man's Bet
      • Casino Avengers
      • Frozen Voting
      • Lockdown
      • Proof of Thought
      • Maybe it's unnecessary?
      • Et tu, Permit2?
      • Not a very LUCKY TOKEN
      • risc4
      • HealthCheck as a Service
      • Restricted Proxy
      • Unstable Pool
      • Opaze Whisperer
      • "memorable" onlyOwner
      • World of Memecraft
      • Copy/Paste/Deploy
      • Peer-to-peer-to-me
      • Joe's Lending Mirage
      • Tokemak
      • OFAC Executive Order 13337
    • 👑Paradigm CTF 2023 (Todo)
      • Oven
      • Dragon Tyrant
    • Damn Vulnerable DeFi
      • ✅Unstoppable
      • ✅Naive Receiver
      • ✅Truster
      • ✅Side Entrance
      • ✅The Rewarder
      • ✅Selfie
      • ✅Compromised
      • ✅Puppet
      • ✅Puppet V2
      • ✅Free Rider
      • Backdoor
      • Climber
      • Wallet Mining (Todo)
      • Puppet V3 (Todo)
      • ABI Smuggling (Todo)
    • Milotruck Challs
      • ✅Greyhats Dollar
      • Escrow
      • Simple AMM Vault
      • Voting Vault
      • ✅Meta Staking
      • ✅Gnosis Unsafe
    • Secureum AMAZEX DSS Paris
      • ✅Operation magic redemption
      • Mission Modern WETH: Rescue the Ether
      • LendEx pool hack
      • Operation Rescue POSI Token!
      • Balloon Vault
      • Safe Yield?
      • ✅Crystal DAO
      • ✅Liquidatoooor
    • ✅Ethernaut
      • ✅Hello Ethernaut
      • ✅Fallback
      • ✅Fallout
      • ✅Coin Flip
      • ✅Telephone
      • ✅Token
      • ✅Delegation
      • ✅Force
      • ✅Vault
      • ✅King
      • ✅Re-entrancy
      • ✅Elevator
      • ✅Privacy
      • ✅Gatekeeper One
      • ✅Gatekeeper Two
      • ✅Naught Coin
      • ✅Preservation
      • ✅Recovery
      • ✅MagicNumber
      • ✅Alien Codex
      • ✅Denial
      • ✅Shop
      • ✅DEX
      • ✅DEX Two
      • ✅Puzzle Wallet
      • Motorbike
      • DoubleEntryPoint
      • ✅Good Samaritan
      • Gatekeeper Three
      • Switch
    • ✅Flashbots MEV-Share CTF
    • ✅Capture the Ether
      • ✅Lotteries
      • ✅Math
      • ✅Miscellaneous
    • ✅EVM Puzzles
      • ✅Puzzle 1
      • ✅Puzzle 2
      • ✅Puzzle 3
      • ✅Puzzle 4
      • ✅Puzzle 5
      • ✅Puzzle 6
      • ✅Puzzle 7
      • ✅Puzzle 8
      • ✅Puzzle 9
      • ✅Puzzle 10
    • ✅More EVM Puzzles
      • ✅Puzzle 1
      • ✅Puzzle 2
      • ✅Puzzle 3
      • ✅Puzzle 4
      • ✅Puzzle 5
      • ✅Puzzle 6
      • ✅Puzzle 7
      • ✅Puzzle 8
      • ✅Puzzle 9
      • ✅Puzzle 10
    • ✅QuillCTF
      • ✅MetaToken
      • ✅Temporary Variable
      • KeyCraft
      • ✅Lottery
      • ✅Private Club
      • Voting Machine
      • ✅Predictable NFT
      • ✅Invest Pool
      • PseudoRandom
      • ✅Gold NFT
      • Slot Puzzle
      • Moloch's Vault
      • ✅Donate
      • ✅WETH-11
      • Panda Token
      • Gate
      • ✅WETH10
      • ✅Pelusa
      • ✅True XOR
      • ✅Collatz Puzzle
      • ✅D31eg4t3
      • ✅Safe NFT
      • ✅VIP Bank
      • ✅Confidential Hash
      • ✅Road Closed
    • ✅unhacked
      • ✅reaper
  • RareSkills Puzzles
    • Solidity Exercises
    • Solidity Riddles
    • Yul Puzzles
      • ✅01 - ReturnBool
      • ✅02 - SimpleRevert
      • ✅03 - Return42
      • ✅04 - RevertWithError
      • ✅05 - RevertWithSelectorPlusArgs
      • 06 - RevertWithPanic
    • Huff Puzzles
    • Uniswap V2 Puzzles
    • Zero Knowledge Puzzles
  • Web2 CTF
    • Grey Cat CTF 2024
      • ✅Web Challs
    • pwn.college
      • Introduction
        • What is Computer Systems Security?
      • Program Interaction
        • Linux Command Line
        • 🚩embryoio
      • Program Misuse
        • Privilege Escalation
        • Mitigations
        • 🚩babysuid
      • Assembly Refresher
        • x86 Assembly
        • 🚩embryoasm
      • Shellcoding
        • Introduction
        • Common Challenges
        • Data Execution Prevention
        • 🚩babyshell
      • Sandboxing
        • chroot
        • seccomp
        • Escaping seccomp
        • 🚩babyjail
      • Debugging Refresher
        • x86 Assembly
        • 🚩embryogdb
      • Binary Reverse Engineering
        • Functions and Frames
        • Data Access
        • Static Tools
        • Dynamic Tools
        • Real-world Applications
        • 🚩babyrev
      • Memory Errors
        • High-Level Problems
        • Smashing the Stack
        • Causes of Corruption
        • Canary
        • ASLR
        • Causes of Disclosure
        • 🚩babymem
      • Exploitation
        • Introduction
        • Hijacking to Shellcode
        • Side Effects
        • JIT Spray
        • 🚩toddler1
      • Return Oriented Programming
        • Binary Lego
        • Techniques
        • Complications
        • 🚩babyrop
      • Dynamic Allocator Misuse
        • What is the Heap?
        • Dangers of the Heap
        • tcache
        • Chunks and Metadata
        • Metadata Corruption
        • 🚩babyheap
      • Race Conditions
        • Introduction
        • Races in the Filesystem
        • 🚩babyrace
      • Kernel Security
        • Environment Setup
        • Kernel Modules
        • Privilege Escalation
        • 🚩babykernel
      • Advanced Exploitation
        • toddler2
    • pwnable.kr
      • fd
      • collision
      • bof
      • flag
      • passcode
      • random
      • input
      • leg
      • mistake
      • shellshock
      • coin1
      • blackjack
      • lotto
      • cmd1
      • cmd2
      • uaf
      • memcpy
      • asm
      • unlink
      • blukat
      • horcruxes
    • ROP Emporium
      • ret2win
      • split
      • callme
      • write4
      • pivot
    • ✅Jarvis OJ Pwn Xman Series
    • ✅Jarvis OJ Crypto RSA Series
    • ✅picoMini by redpwn
      • Binary Exploitation
      • Reverse Engineering
      • Cryptography
      • Web Exploitation
      • Forensics
    • ✅picoCTF 2021
      • Reverse Engineering
      • Web Exploitation
      • Forensics
    • ✅picoCTF 2020 Mini-Competition
  • Red Teaming
    • vulnlab
      • Active Directory Chains
        • ✅Trusted (Easy)
        • Hybrid (Easy)
        • Lustrous (Medium)
        • Reflection (Medium)
        • Intercept (Hard)
      • Red Team Labs
        • Wutai (Medium)
        • Shinra (Hard)
    • Hack The Box
      • AD
        • Intelligence
        • Pivotapi
        • Sharp
        • Monteverde
        • Resolute
        • Endgame: P.O.O.
        • Forest
        • Sauna
        • Active
        • Blackfield
      • ✅Linux
        • ✅Safe (Easy)
        • ✅Delivery (Easy)
        • ✅TheNotebook (Medium)
        • ✅Brainfuck (Insane)
    • TCM Windows Privilege Escalation Course
      • ✅Hack The Box - Chatterbox (Medium)
      • Hack The Box - SecNotes (Medium)
    • ✅TCM Linux Privilege Escalation Course
      • ✅TryHackMe - Simple CTF (Easy)
      • ✅TryHackMe - Vulnversity (Easy)
      • ✅TryHackMe - CMesS (Medium)
      • ✅TryHackMe - UltraTech (Medium)
      • ✅TryHackMe - LazyAdmin (Easy)
      • ✅TryHackMe - Anonymous (Medium)
      • ✅TryHackMe - tomghost (Easy)
      • ✅TryHackMe - ConvertMyVideo (Medium)
      • ✅TryHackMe - Brainpan 1 (Hard)
Powered by GitBook
On this page
  • Lecture
  • Breaking out
  • Attack Vector 1: Permissive Policies
  • Attack Vector 2: Syscall Confusion
  • Attack Vector 3: Kernel Vulnerabilities
  • Attack Vector 4: Side Channel Attacks
  1. Web2 CTF
  2. pwn.college
  3. Sandboxing

Escaping seccomp

PreviousseccompNextbabyjail

Last updated 3 years ago

Lecture

Breaking out

Recall that we have discussed the "trust boundary" in the "Into the Jail" section: when a child process needs to perform a privileged action, it must ask the parent process for permission. In other word, to do anything useful, a sandboxed process needs to communicate with the privileged process. That is, the sandboxed process needs to use some of the syscalls. This relaxation opens up some attack vectors:

  1. Permissive policies

  2. Syscall confusion

  3. Kernel vulnerabilities (in the syscall handlers)

Attack Vector 1: Permissive Policies

System calls are complex, and there are a lot of them. Developers might avoid breaking functionality by erring on the side of permissiveness.

A well-known example is ptrace(). Depending on system configuration, allowing the ptrace() system call could let a sandboxed process to "puppet" a non-sandboxed process.

Some less well-known effects include:

  • sendmsg() can transfer file descriptors between processes.

  • prctl() has bizarre possible effects.

  • process_vm_writev() allows direct access to other process' memory.

Attack Vector 2: Syscall Confusion

Policies that allow both 32-bit and 64-bit syscalls can fail to properly sandbox one or the other mode.

Many 64-bit architectures are backwards compatible with their 32-bit ancestors. For example:

  • amd64 / x86_64 => x86

  • aarch64 => arm

  • mips64 => mips

  • powerpc64 => ppc

  • sparc64 => sparc

On some systems (including amd64), you can switch between 32-bit mode and 64-bit mode in the same process, so the kernel must be ready for either. However, syscalls numbers differ between architectures, including 32-bit and 64-bit variants of the same architecture. For example, the syscall number for execve is 0xb on x86 and 0x3b on x86-64; the syscall number for exit is 0x1 on x86 and 0x3c on x86-64. This behavior causes the potential "syscall confusion" when the both 32-bit and 64-bit syscalls are allowed.

Attack Vector 3: Kernel Vulnerabilities

Even if the seccomp sandbox is correctly configured, attackers can still interact with whitelisted syscalls.

As long as attackers can use some of the syscalls, they are able to trigger vulnerabilities in the kernel. For real-world examples, check out Chrome sandbox escape exploit:

Attack Vector 4: Side Channel Attacks

Think: what is your goal as an attacker? Is it always code execution?

Not really. Often, your goal is data exfiltration (like /flag!). Even if you can't directly communicate with the outside world, often you can send "smoke signals":

  • Runtime of a process (see sleep(x) system call) can convey a lot of data.

  • Clean termination or a crash? This can convey one bit.

  • Return value of a program (exit(x)) can convey one byte.

For a real-world example, attackers use DNS queries to bypass network egress filters. As long as you can communicate 1 bit, you can repeat the attack to get more and more bits!

Escaping seccomp
GitHub - allpaca/chrome-sbx-db: A Collection of Chrome Sandbox Escape POCs/Exploits for learningGitHub
Chrome Sandbox Escape PoCs
Logo