ctfwriteup
  • ✅/home/ret2basic.eth
  • Game Hacking
    • 👑Pwn Adventure 3: Pwnie Island
      • ✅Prep: Speed Hack
      • ✅Prep: Infinite Health and Mana (Offline)
      • ✅Prep: Analyze Network Packets with Wireshark
      • Prep: Build a Proxy in Python
      • ✅Until the Cows Come Home
      • Unbearable Revenge
      • Pirate's Treasure
    • Cheat Engine Tutorial
      • ✅Step 1: Setup
      • ✅Step 2: Scan for "Exact Value"
      • ✅Step 3: Scan for "Unknown initial value"
      • ✅Step 4: Scan for float and double
      • ✅Step 5: Replace instruction
      • Step 6: Pointer scanning
      • Step 7: Code injection
      • Step 8: Multilevel pointers
      • Step 9: Shared code
  • Web3 CTF
    • 👑Remedy CTF 2025 (Todo)
      • Diamond Heist
      • R vs Q
      • Rich Man's Bet
      • Casino Avengers
      • Frozen Voting
      • Lockdown
      • Proof of Thought
      • Maybe it's unnecessary?
      • Et tu, Permit2?
      • Not a very LUCKY TOKEN
      • risc4
      • HealthCheck as a Service
      • Restricted Proxy
      • Unstable Pool
      • Opaze Whisperer
      • "memorable" onlyOwner
      • World of Memecraft
      • Copy/Paste/Deploy
      • Peer-to-peer-to-me
      • Joe's Lending Mirage
      • Tokemak
      • OFAC Executive Order 13337
    • 👑Paradigm CTF 2023 (Todo)
      • Oven
      • Dragon Tyrant
    • Damn Vulnerable DeFi
      • ✅Unstoppable
      • ✅Naive Receiver
      • ✅Truster
      • ✅Side Entrance
      • ✅The Rewarder
      • ✅Selfie
      • ✅Compromised
      • ✅Puppet
      • ✅Puppet V2
      • ✅Free Rider
      • Backdoor
      • Climber
      • Wallet Mining (Todo)
      • Puppet V3 (Todo)
      • ABI Smuggling (Todo)
    • Milotruck Challs
      • ✅Greyhats Dollar
      • Escrow
      • Simple AMM Vault
      • Voting Vault
      • ✅Meta Staking
      • ✅Gnosis Unsafe
    • Secureum AMAZEX DSS Paris
      • ✅Operation magic redemption
      • Mission Modern WETH: Rescue the Ether
      • LendEx pool hack
      • Operation Rescue POSI Token!
      • Balloon Vault
      • Safe Yield?
      • ✅Crystal DAO
      • ✅Liquidatoooor
    • ✅Ethernaut
      • ✅Hello Ethernaut
      • ✅Fallback
      • ✅Fallout
      • ✅Coin Flip
      • ✅Telephone
      • ✅Token
      • ✅Delegation
      • ✅Force
      • ✅Vault
      • ✅King
      • ✅Re-entrancy
      • ✅Elevator
      • ✅Privacy
      • ✅Gatekeeper One
      • ✅Gatekeeper Two
      • ✅Naught Coin
      • ✅Preservation
      • ✅Recovery
      • ✅MagicNumber
      • ✅Alien Codex
      • ✅Denial
      • ✅Shop
      • ✅DEX
      • ✅DEX Two
      • ✅Puzzle Wallet
      • Motorbike
      • DoubleEntryPoint
      • ✅Good Samaritan
      • Gatekeeper Three
      • Switch
    • ✅Flashbots MEV-Share CTF
    • ✅Capture the Ether
      • ✅Lotteries
      • ✅Math
      • ✅Miscellaneous
    • ✅EVM Puzzles
      • ✅Puzzle 1
      • ✅Puzzle 2
      • ✅Puzzle 3
      • ✅Puzzle 4
      • ✅Puzzle 5
      • ✅Puzzle 6
      • ✅Puzzle 7
      • ✅Puzzle 8
      • ✅Puzzle 9
      • ✅Puzzle 10
    • ✅More EVM Puzzles
      • ✅Puzzle 1
      • ✅Puzzle 2
      • ✅Puzzle 3
      • ✅Puzzle 4
      • ✅Puzzle 5
      • ✅Puzzle 6
      • ✅Puzzle 7
      • ✅Puzzle 8
      • ✅Puzzle 9
      • ✅Puzzle 10
    • ✅QuillCTF
      • ✅MetaToken
      • ✅Temporary Variable
      • KeyCraft
      • ✅Lottery
      • ✅Private Club
      • Voting Machine
      • ✅Predictable NFT
      • ✅Invest Pool
      • PseudoRandom
      • ✅Gold NFT
      • Slot Puzzle
      • Moloch's Vault
      • ✅Donate
      • ✅WETH-11
      • Panda Token
      • Gate
      • ✅WETH10
      • ✅Pelusa
      • ✅True XOR
      • ✅Collatz Puzzle
      • ✅D31eg4t3
      • ✅Safe NFT
      • ✅VIP Bank
      • ✅Confidential Hash
      • ✅Road Closed
    • ✅unhacked
      • ✅reaper
  • RareSkills Puzzles
    • Solidity Exercises
    • Solidity Riddles
    • Yul Puzzles
      • ✅01 - ReturnBool
      • ✅02 - SimpleRevert
      • ✅03 - Return42
      • ✅04 - RevertWithError
      • ✅05 - RevertWithSelectorPlusArgs
      • 06 - RevertWithPanic
    • Huff Puzzles
    • Uniswap V2 Puzzles
    • Zero Knowledge Puzzles
  • Web2 CTF
    • Grey Cat CTF 2024
      • ✅Web Challs
    • pwn.college
      • Introduction
        • What is Computer Systems Security?
      • Program Interaction
        • Linux Command Line
        • 🚩embryoio
      • Program Misuse
        • Privilege Escalation
        • Mitigations
        • 🚩babysuid
      • Assembly Refresher
        • x86 Assembly
        • 🚩embryoasm
      • Shellcoding
        • Introduction
        • Common Challenges
        • Data Execution Prevention
        • 🚩babyshell
      • Sandboxing
        • chroot
        • seccomp
        • Escaping seccomp
        • 🚩babyjail
      • Debugging Refresher
        • x86 Assembly
        • 🚩embryogdb
      • Binary Reverse Engineering
        • Functions and Frames
        • Data Access
        • Static Tools
        • Dynamic Tools
        • Real-world Applications
        • 🚩babyrev
      • Memory Errors
        • High-Level Problems
        • Smashing the Stack
        • Causes of Corruption
        • Canary
        • ASLR
        • Causes of Disclosure
        • 🚩babymem
      • Exploitation
        • Introduction
        • Hijacking to Shellcode
        • Side Effects
        • JIT Spray
        • 🚩toddler1
      • Return Oriented Programming
        • Binary Lego
        • Techniques
        • Complications
        • 🚩babyrop
      • Dynamic Allocator Misuse
        • What is the Heap?
        • Dangers of the Heap
        • tcache
        • Chunks and Metadata
        • Metadata Corruption
        • 🚩babyheap
      • Race Conditions
        • Introduction
        • Races in the Filesystem
        • 🚩babyrace
      • Kernel Security
        • Environment Setup
        • Kernel Modules
        • Privilege Escalation
        • 🚩babykernel
      • Advanced Exploitation
        • toddler2
    • pwnable.kr
      • fd
      • collision
      • bof
      • flag
      • passcode
      • random
      • input
      • leg
      • mistake
      • shellshock
      • coin1
      • blackjack
      • lotto
      • cmd1
      • cmd2
      • uaf
      • memcpy
      • asm
      • unlink
      • blukat
      • horcruxes
    • ROP Emporium
      • ret2win
      • split
      • callme
      • write4
      • pivot
    • ✅Jarvis OJ Pwn Xman Series
    • ✅Jarvis OJ Crypto RSA Series
    • ✅picoMini by redpwn
      • Binary Exploitation
      • Reverse Engineering
      • Cryptography
      • Web Exploitation
      • Forensics
    • ✅picoCTF 2021
      • Reverse Engineering
      • Web Exploitation
      • Forensics
    • ✅picoCTF 2020 Mini-Competition
  • Red Teaming
    • vulnlab
      • Active Directory Chains
        • ✅Trusted (Easy)
        • Hybrid (Easy)
        • Lustrous (Medium)
        • Reflection (Medium)
        • Intercept (Hard)
      • Red Team Labs
        • Wutai (Medium)
        • Shinra (Hard)
    • Hack The Box
      • AD
        • Intelligence
        • Pivotapi
        • Sharp
        • Monteverde
        • Resolute
        • Endgame: P.O.O.
        • Forest
        • Sauna
        • Active
        • Blackfield
      • ✅Linux
        • ✅Safe (Easy)
        • ✅Delivery (Easy)
        • ✅TheNotebook (Medium)
        • ✅Brainfuck (Insane)
    • TCM Windows Privilege Escalation Course
      • ✅Hack The Box - Chatterbox (Medium)
      • Hack The Box - SecNotes (Medium)
    • ✅TCM Linux Privilege Escalation Course
      • ✅TryHackMe - Simple CTF (Easy)
      • ✅TryHackMe - Vulnversity (Easy)
      • ✅TryHackMe - CMesS (Medium)
      • ✅TryHackMe - UltraTech (Medium)
      • ✅TryHackMe - LazyAdmin (Easy)
      • ✅TryHackMe - Anonymous (Medium)
      • ✅TryHackMe - tomghost (Easy)
      • ✅TryHackMe - ConvertMyVideo (Medium)
      • ✅TryHackMe - Brainpan 1 (Hard)
Powered by GitBook
On this page
  • veryeasyRSA (RSA Decryption Algorithm)
  • Solution
  • Implementation
  • Easy RSA (Small Modulus)
  • Solution
  • Implementation
  • Medium RSA (Wiener's Attack)
  • Solution
  • Implementation
  • hard RSA (Rabin Cryptosystem)
  • Solution
  • Implementation
  • very hard RSA (Common Modulus)
  • Code Review
  • Solution
  • Implementation
  • Extremely hard RSA (Low Public Exponent Brute-forcing)
  • Solution
  • Implementation
  • God Like RSA
  1. Web2 CTF

Jarvis OJ Crypto RSA Series

PreviousJarvis OJ Pwn Xman SeriesNextpicoMini by redpwn

Last updated 3 months ago

veryeasyRSA (RSA Decryption Algorithm)

Solution

Implementation

#!/usr/bin/env python3
from Crypto.Util.number import inverse

#--------Data--------#

p = 3487583947589437589237958723892346254777 
q = 8767867843568934765983476584376578389
e = 65537

#--------RSA--------#

phi = (p - 1) * (q - 1)
d = inverse(e, phi)

print(d)

Easy RSA (Small Modulus)

Solution

Implementation

#!/usr/bin/env python3
from Crypto.Util.number import inverse, long_to_bytes
from factordb.factordb import FactorDB

#--------Data--------#

N = 322831561921859
e = 23
c = 0xdc2eeeb2782c

#--------FactorDB--------#

f = FactorDB(N)
f.connect()
factors = f.get_factor_list()

#--------RSA Decryption--------#

phi = 1
for factor in factors:
    phi *= factor - 1

d = inverse(e, phi)
m = pow(c, d, N)
flag = long_to_bytes(m).decode()

print(flag)

Medium RSA (Wiener's Attack)

Solution

Implementation

#!/usr/bin/env python3
from Crypto.Util.number import inverse, long_to_bytes, bytes_to_long
from Crypto.PublicKey import RSA
from factordb.factordb import FactorDB

#--------Data--------#

with open("pubkey.pem","r") as f1, open("flag.enc", "rb") as f2:
    key = RSA.import_key(f1.read())
    N = key.n
    e = key.e
    c = bytes_to_long(f2.read())
    print(f"{N = }")
    print(f"{e = }")
    print(f"{c = }")

#--------FactorDB--------#

f = FactorDB(N)
f.connect()
factors = f.get_factor_list()

#--------RSA Decryption--------#

phi = 1
for factor in factors:
    phi *= factor - 1

d = inverse(e, phi)
m = pow(c, d, N)
flag = long_to_bytes(m)

print(flag)

hard RSA (Rabin Cryptosystem)

Solution

  1. The message is much smaller than the modulus, so we can simply compute m = sympy.root(c, 2).

  2. This is a Rabin cryptosystem.

This challenge falls into category 2.

Implementation

#!/usr/bin/env python3
from Crypto.Util.number import inverse, long_to_bytes, bytes_to_long
from Crypto.PublicKey import RSA
from factordb.factordb import FactorDB

#--------Data--------#

with open("pubkey.pem","r") as f1, open("flag.enc", "rb") as f2:
    key = RSA.import_key(f1.read())
    N = key.n
    e = key.e
    c = bytes_to_long(f2.read())
    print(f"{N = }")
    print(f"{e = }")
    print(f"{c = }")

#--------FactorDB--------#

f = FactorDB(N)
f.connect()
factors = f.get_factor_list()

p = factors[0]
q = factors[1]

#--------Rabin Cryptosystem--------#

inv_p = inverse(p, q)
inv_q = inverse(q, p)

m_p = pow(c, (p + 1) // 4, p)
m_q = pow(c, (q + 1) // 4, q)

a = (inv_p * p * m_q + inv_q * q * m_p) % N
b = N - int(a)
c = (inv_p * p * m_q - inv_q * q * m_p) % N
d = N - int(c)

plaintext_list = [a, b, c, d]

for plaintext in plaintext_list:
    s = str(hex(plaintext))[2:]

    # padding with 0
    if len(s) % 2 != 0:
        s = "0" + s
    print(bytes.fromhex(s))

very hard RSA (Common Modulus)

Code Review

#!/usr/bin/env python

import random

N = 0x00b0bee5e3e9e5a7e8d00b493355c618fc8c7d7d03b82e409951c182f398dee3104580e7ba70d383ae5311475656e8a964d380cb157f48c951adfa65db0b122ca40e42fa709189b719a4f0d746e2f6069baf11cebd650f14b93c977352fd13b1eea6d6e1da775502abff89d3a8b3615fd0db49b88a976bc20568489284e181f6f11e270891c8ef80017bad238e363039a458470f1749101bc29949d3a4f4038d463938851579c7525a69984f15b5667f34209b70eb261136947fa123e549dfff00601883afd936fe411e006e4e93d1a00b0fea541bbfc8c5186cb6220503a94b2413110d640c77ea54ba3220fc8f4cc6ce77151e29b3e06578c478bd1bebe04589ef9a197f6f806db8b3ecd826cad24f5324ccdec6e8fead2c2150068602c8dcdc59402ccac9424b790048ccdd9327068095efa010b7f196c74ba8c37b128f9e1411751633f78b7b9e56f71f77a1b4daad3fc54b5e7ef935d9a72fb176759765522b4bbc02e314d5c06b64d5054b7b096c601236e6ccf45b5e611c805d335dbab0c35d226cc208d8ce4736ba39a0354426fae006c7fe52d5267dcfb9c3884f51fddfdf4a9794bcfe0e1557113749e6c8ef421dba263aff68739ce00ed80fd0022ef92d3488f76deb62bdef7bea6026f22a1d25aa2a92d124414a8021fe0c174b9803e6bb5fad75e186a946a17280770f1243f4387446ccceb2222a965cc30b3929L

def pad_even(x):
    return ('', '0')[len(x)%2] + x

e1 = 17
e2 = 65537


fi = open('flag.txt','rb')
fo1 = open('flag.enc1','wb')
fo2 = open('flag.enc2','wb')


data = fi.read()
fi.close()

while (len(data)<512-11):
    data  =  chr(random.randint(0,255))+data

data_num = int(data.encode('hex'),16)

encrypt1 = pow(data_num,e1,N)
encrypt2 = pow(data_num,e2,N)


fo1.write(pad_even(format(encrypt1,'x')).decode('hex'))
fo2.write(pad_even(format(encrypt2,'x')).decode('hex'))

fo1.close()
fo2.close()

Solution

Take a look at this snippet:

encrypt1 = pow(data_num,e1,N)
encrypt2 = pow(data_num,e2,N)

Implementation

#!/usr/bin/env python3
from Crypto.Util.number import inverse, long_to_bytes, bytes_to_long
from Crypto.PublicKey import RSA
from sympy import gcdex
from sys import exit

#--------Data--------#

N = 0x00b0bee5e3e9e5a7e8d00b493355c618fc8c7d7d03b82e409951c182f398dee3104580e7ba70d383ae5311475656e8a964d380cb157f48c951adfa65db0b122ca40e42fa709189b719a4f0d746e2f6069baf11cebd650f14b93c977352fd13b1eea6d6e1da775502abff89d3a8b3615fd0db49b88a976bc20568489284e181f6f11e270891c8ef80017bad238e363039a458470f1749101bc29949d3a4f4038d463938851579c7525a69984f15b5667f34209b70eb261136947fa123e549dfff00601883afd936fe411e006e4e93d1a00b0fea541bbfc8c5186cb6220503a94b2413110d640c77ea54ba3220fc8f4cc6ce77151e29b3e06578c478bd1bebe04589ef9a197f6f806db8b3ecd826cad24f5324ccdec6e8fead2c2150068602c8dcdc59402ccac9424b790048ccdd9327068095efa010b7f196c74ba8c37b128f9e1411751633f78b7b9e56f71f77a1b4daad3fc54b5e7ef935d9a72fb176759765522b4bbc02e314d5c06b64d5054b7b096c601236e6ccf45b5e611c805d335dbab0c35d226cc208d8ce4736ba39a0354426fae006c7fe52d5267dcfb9c3884f51fddfdf4a9794bcfe0e1557113749e6c8ef421dba263aff68739ce00ed80fd0022ef92d3488f76deb62bdef7bea6026f22a1d25aa2a92d124414a8021fe0c174b9803e6bb5fad75e186a946a17280770f1243f4387446ccceb2222a965cc30b3929
e1 = 17
e2 = 65537

with open("flag.enc1","rb") as f1, open("flag.enc2", "rb") as f2:
    c1 = bytes_to_long(f1.read())
    c2 = bytes_to_long(f2.read())
    print(f"{c1 = }")
    print(f"{c2 = }")

#--------Common Modulus--------#

r, s, gcd = gcdex(e1, e2)
r = int(r)
s = int(s)

# Test if e1 and e2 are coprime
if gcd != 1:
    print("e1 and e2 must be coprime")
    exit()

m = (pow(c1, r, N) * pow(c2, s, N)) % N
flag = long_to_bytes(m)

print(flag)

Extremely hard RSA (Low Public Exponent Brute-forcing)

Solution

Implementation

#!/usr/bin/env python3
from Crypto.Util.number import long_to_bytes, bytes_to_long
from Crypto.PublicKey import RSA
from sympy import integer_nthroot

#--------Data--------#

with open("pubkey.pem","r") as f1, open("flag.enc", "rb") as f2:
    key = RSA.import_key(f1.read())
    N = key.n
    e = key.e
    c = bytes_to_long(f2.read()
    print(f"{N = }")
    print(f"{e = }")
    print(f"{c = }")

#--------Brute-forcing--------#

while True:
    # Example: integer_nthroot(16, 2) -> (4, True)
    # Note that the True or False here is boolean value
    result = integer_nthroot(c, 3)
    if result[1]:
        m = result[0]
        break
    c += N

flag = long_to_bytes(m).decode()

print(flag)

God Like RSA

Todo!

Since ppp and qqq are given, we could decrypt the message directly with the RSA decryption algorithm.

The prime factors of modulus NNN can be easily found with . To simplify this process, we could use the module.

Note that the eee is really large. This is an indication for Wiener's Attack. However, this challenge is even simpler than that: FactorDB knows the prime factors of NNN.

We got e=2e = 2e=2 in this challenge. There are two possibilities here:

Note that same modulus NNN is used twice. Moreover, e1e_1e1​ and e2e_2e2​ are coprime, so this challenge falls into the "common modulus attack" category.

We have e=3e = 3e=3 this time. Since the public exponent is small, brute-force attack is possible. We can try all c+k∗Nc + k * Nc+k∗N (where kkk is an natural number) until we find a perfect cube. Then the cubic root of c+k∗Nc + k * Nc+k∗N is exactly the plaintext mmm.

✅
FactorDB
factordb-python
Jarvis OJ
Jarvis OJ
Logo