Note that the e is really large. This is an indication for Wiener's Attack. However, this challenge is even simpler than that: FactorDB knows the prime factors of N.
Note that same modulus N is used twice. Moreover, e1 and e2 are coprime, so this challenge falls into the "common modulus attack" category.
Implementation
#!/usr/bin/env python3from Crypto.Util.number import inverse, long_to_bytes, bytes_to_longfrom Crypto.PublicKey import RSAfrom sympy import gcdexfrom sys importexit#--------Data--------#N = 0x00b0bee5e3e9e5a7e8d00b493355c618fc8c7d7d03b82e409951c182f398dee3104580e7ba70d383ae5311475656e8a964d380cb157f48c951adfa65db0b122ca40e42fa709189b719a4f0d746e2f6069baf11cebd650f14b93c977352fd13b1eea6d6e1da775502abff89d3a8b3615fd0db49b88a976bc20568489284e181f6f11e270891c8ef80017bad238e363039a458470f1749101bc29949d3a4f4038d463938851579c7525a69984f15b5667f34209b70eb261136947fa123e549dfff00601883afd936fe411e006e4e93d1a00b0fea541bbfc8c5186cb6220503a94b2413110d640c77ea54ba3220fc8f4cc6ce77151e29b3e06578c478bd1bebe04589ef9a197f6f806db8b3ecd826cad24f5324ccdec6e8fead2c2150068602c8dcdc59402ccac9424b790048ccdd9327068095efa010b7f196c74ba8c37b128f9e1411751633f78b7b9e56f71f77a1b4daad3fc54b5e7ef935d9a72fb176759765522b4bbc02e314d5c06b64d5054b7b096c601236e6ccf45b5e611c805d335dbab0c35d226cc208d8ce4736ba39a0354426fae006c7fe52d5267dcfb9c3884f51fddfdf4a9794bcfe0e1557113749e6c8ef421dba263aff68739ce00ed80fd0022ef92d3488f76deb62bdef7bea6026f22a1d25aa2a92d124414a8021fe0c174b9803e6bb5fad75e186a946a17280770f1243f4387446ccceb2222a965cc30b3929
e1 =17e2 =65537withopen("flag.enc1","rb")as f1,open("flag.enc2", "rb")as f2: c1 =bytes_to_long(f1.read()) c2 =bytes_to_long(f2.read())print(f"{c1 = }")print(f"{c2 = }")#--------Common Modulus--------#r, s, gcd =gcdex(e1, e2)r =int(r)s =int(s)# Test if e1 and e2 are coprimeif gcd !=1:print("e1 and e2 must be coprime")exit()m = (pow(c1, r, N)*pow(c2, s, N)) % Nflag =long_to_bytes(m)print(flag)
Extremely hard RSA (Low Public Exponent Brute-forcing)
Solution
We have e=3 this time. Since the public exponent is small, brute-force attack is possible. We can try all c+k∗N (where k is an natural number) until we find a perfect cube. Then the cubic root of c+k∗N is exactly the plaintext m.
Implementation
#!/usr/bin/env python3from Crypto.Util.number import long_to_bytes, bytes_to_longfrom Crypto.PublicKey import RSAfrom sympy import integer_nthroot#--------Data--------#withopen("pubkey.pem","r")as f1,open("flag.enc", "rb")as f2: key = RSA.import_key(f1.read()) N = key.n e = key.e c =bytes_to_long(f2.read()print(f"{N = }")print(f"{e = }")print(f"{c = }")#--------Brute-forcing--------#whileTrue:# Example: integer_nthroot(16, 2) -> (4, True)# Note that the True or False here is boolean value result =integer_nthroot(c, 3)if result[1]: m = result[0]break c += Nflag =long_to_bytes(m).decode()print(flag)