ctfnote
  • /home/ret2basic.eth
  • Game Hacking
    • βœ…C++
    • Ghidra
    • Cheat Engine
    • Proxy
    • DLL injection
    • Keygen
    • Aimbot
  • Web3 Security Research
    • πŸ‘‘Web3 Security Research Trivia
    • βœ…Solidity
      • βœ…Mastering Ethereum
      • βœ…Storage
      • βœ…Memory
      • βœ…Calldata
      • βœ…ABI
    • βœ…Foundry
      • βœ…Introduction
      • βœ…How to Write Basic Tests
      • βœ…Set Soliditiy Compiler Version
      • βœ…Remappings
      • βœ…Auto Format Code
      • βœ…Console Log
      • βœ…Authentication
      • βœ…Error
      • βœ…Event
      • βœ…Time
      • βœ…Send ETH
      • βœ…Signature
      • βœ…Fork
      • βœ…Mint 1 Million DAI on Mainnet Fork
      • βœ…FFI
      • βœ…Fuzz
      • βœ…Invariant Testing - Part 1
      • Invariant Testing - Part 2
      • Invariant Testing - Part 3
      • Differential Test
    • βœ…Secureum
      • βœ…Epoch 0
        • βœ…Slot 1: Ethereum 101
          • βœ…Notes
          • βœ…Ethereum Whitepaper
          • βœ…Extra Study: What happens when you send 1 DAI
          • βœ…Quiz
        • βœ…Slot 2: Solidity 101
          • βœ…Notes
          • βœ…OpenZeppelin ERC20
          • βœ…OpenZeppelin ERC721
          • βœ…OpenZeppelin Ownable
          • βœ…OpenZeppelin Pausable
          • βœ…OpenZeppelin ReentrancyGuard
          • βœ…Quiz
        • βœ…Slot 3: Solidity 201
          • βœ…Notes
          • βœ…OpenZeppelin SafeERC20
          • βœ…OpenZeppelin ERC-777
          • βœ…OpenZeppelin ERC-1155
          • βœ…OpenZeppelin ERC-3156
          • βœ…OpenZeppelin - Proxy Upgrade Pattern
          • βœ…Quiz
        • βœ…Slot 4: Pitfalls and Best Practices 101
          • βœ…Notes
          • βœ…Intro to Security First Development
          • βœ…Quiz
        • βœ…Slot 5: Pitfalls and Best Practices 201
          • βœ…Notes
          • So you want to use a price oracle
          • The Dangers of Surprising Code
          • βœ…Quiz
        • βœ…Slot 6: Auditing Techniques & Tools 101
          • βœ…Notes
          • βœ…Quiz
        • βœ…Slot 7: Audit Findings 101
          • Notes
          • βœ…Fei Protocol - ConsenSys
          • βœ…Uniswap V3 - Trail of Bits
          • βœ…Chainlink - Sigma Prime
          • βœ…Opyn Gamma - OpenZeppelin
          • βœ…Quiz
        • βœ…Slot 8: Audit Findings 201
          • Notes
          • 1inch Liquidity - Consensus
          • Original Dollar - Trail of Bits
          • Synthetix EtherCollateral - Sigma Prime
          • Holdefi - OpenZeppelin
          • Quiz
      • βœ…Epoch ∞
        • βœ…RACE #4 - ERC20 Implementation
        • βœ…RACE #5 - ERC1155 Implementation
        • βœ…RACE #6 - ERC721 Application
        • βœ…RACE #7 - Bored Ape
        • βœ…RACE #8 - ERC721 Roles
        • βœ…RACE #9 - Proxy
        • βœ…RACE #10 - Test Cases
        • βœ…RACE #11 - Staking
        • βœ…RACE #12 - ERC20 Permit
        • βœ…RACE #13 - ERC20 with Callback
        • βœ…RACE #14 - Lending
        • βœ…RACE #15 - DEX
        • βœ…RACE #16 - Flash Loan
        • βœ…RACE #17
    • DeFi
      • Glossary
        • TWAP vs. VWAP
        • Tranches
      • DeFi MOOC
        • Lecture 2: Introduction to Blockchain Technologies
        • Lecture 5: DEX
        • Lecture 6: Decentralized Lending
        • Lecture 10: Privacy on the Blockchain
        • Lecture 12: Practical Smart Contract Security
        • Lecture 13: DeFi Security
      • Uniswap V2
      • Compound V3
        • βœ…Whitepaper
        • βœ…Interacting with Compound
          • βœ…Supply and Redeem
          • βœ…Borrow and Repay
          • βœ…Liquidation
          • βœ…Long and Short
        • βœ…Interest Model
        • CToken
      • Aave
      • Chainlink
        • βœ…Getting Started
        • βœ…Data Feeds
        • βœ…VRF
      • Optimism
        • Bedrock
      • LayerZero
      • Opensea
        • Seaport
    • EVM
      • βœ…Andreas Antonopoulos - The Ethereum Virtual Machine
      • βœ…Program The Blockchain - Smart Contract Storage
      • βœ…EVM Codes - EVM Playground for Opcodes
      • βœ…Fvictorio - EVM Puzzles
      • βœ…Daltyboy11 - More EVM Puzzles
      • βœ…EVM Through Huff
      • Noxx - EVM Deep Dives
      • βœ…Jordan McKinney - EVM Explained
      • Openzepplin - Deconstructing a Solidity Contract
      • Jeancvllr - EVM Assembly
      • Peter Robinson - Solidity to Bytecode, Memory & Storage
      • Marek Kirejczyk - Ethereum Under The Hood
      • βœ…Official Solidity Docs
      • Dissecting EVM using go-ethereum Eth client implementation - deliriusz.eth
    • Vulnerabilities
      • Rounding Issues
        • Kyberswap
      • Bridges
      • Governance / Voting Escrows
      • Bizzare Bug Classes
        • TIME - ERC2771Context + Multicall calldata manipulation
    • Fancy Topics
      • Vulnerabilities SoK
        • βœ…Demystifying Exploitable Bugs in Smart Contracts
        • Blockchain Hacking Techniques 2022 Top 10 - Todo
      • yAcademy
        • Proxies
          • yAcademy - Proxy Basics
          • yAcademy - Proxies Deep Dive
          • yAcademy - Security Guide to Proxy Vulns
        • defi-fork-bugs
      • Spearbit
        • βœ…Community Workshop: Riley Holterhus
        • Economic Security with fmrmf
        • Numerical Analysis for DeFi Audits: A TWAMM Case Study by Kurt Barry
  • Red Teaming
    • βœ…Enumeration
      • Service Enumeration
        • SMTP (Port 25)
        • Samba (Port 139, 445)
        • SNMP (Port 161,162,10161,10162)
        • rsync (Port 873)
        • NFS (Port 2049)
        • Apache JServ Protocol (Port 8081)
        • NetBIOS
      • Nmap
      • Gobuster / Feroxbuster / FUFF / Wfuzz
      • Drupal
    • βœ…Exploitation
      • Public Exploits
      • PHP Webshells
      • Reverse Shell
      • TTY
      • File Transfer
      • Metasploit
      • Password Spray
    • βœ…Buffer Overflow
      • Step 0: Spiking (Optional)
      • Step 1: Fuzzing
      • Step 2: Finding the Offset
      • Step 3: Overwriting the EIP
      • Step 4: Finding Bad Characters
      • Step 5: Finding the Right Module
      • Step 6: Generating Shellcode and Gaining Root
    • βœ…Privilege Escalation
      • Linux Privilege Escalation
        • Linux Permissions
        • Manual Enumeration
        • Automated Tools
        • Kernel Exploits
        • Passwords and File Permissions
        • SSH Keys
        • Sudo
        • SUID
        • Capabilities
        • Cron Jobs
        • NFS Root Squashing
        • Docker
        • GNU C Library
        • Exim
        • Linux Privilege Escalation Course Capstone
      • Windows Privilege Escalation
        • Manual Enumeration
        • Automated Tools
        • Kernel Exploits
        • Passwords and Port Forwarding
        • WSL
        • Token Impersonation and Potato Attacks
        • Meterpreter getsystem
        • Runas
        • UAC Bypass
        • Registry
        • Executable Files
        • Startup Applications
        • DLL Hijacking
        • Service Permissions (Paths)
        • CVE-2019-1388
        • HiveNightmare
        • Bypass Space Filter
    • βœ…Post Exploitation
      • Linux Post Exploitation
        • Add a User
        • SSH Key
      • Windows Post Exploitation
        • windows-resources
        • Add a User
        • RDP
    • βœ…Pivoting
      • Windows: Chisel
      • Linux: sshuttle
    • Active Directory (AD)
      • Initial Compromise
        • HTA Phishing
        • VBA Macro Phishing
        • LLMNR Poisoning
        • SMB Relay
        • GPP / cPassword
      • Domain Enumeration
        • Manual Enumeration
        • PowerView
        • BloodHound
      • Lateral Movement
        • PsExec
        • WMI
        • Runas
        • Pass the Hash
        • Overpass the Hash
        • Pass the Ticket
      • Kerberos
        • Kerberoast
        • AS-REP Roast
      • MS SQL Server
    • Command & Control (C2)
      • Cobalt Strike
        • Bypassing Defences
          • Artifact Kit
          • Resource Kit
          • AMSI Bypass
          • PowerPick
        • Extending Cobalt Strike
          • Elevate Kit
          • Malleable C2 Profile
      • Metasploit
        • Payloads
        • Post Exploitation
        • Automation
      • C2 Development
    • Malware Development
      • "Hot Dropper"
      • PE Format
        • Overview
      • Process Injection
      • Reflective DLL
      • x86 <=> x64
      • Hooking
      • VeraCry
      • Offensive C#
      • AV Evasion
        • AV Evasion with C# and PowerShell
        • AMSI Bypass
  • Cryptography
    • Hash Functions
    • MAC
    • AES
      • Byte at a Time
      • CBC CCA
      • CBC Bit Flipping
      • CBC Padding Oracle
    • Diffie-Hellman
    • RSA
      • Prime Factors
      • Multiple Ciphertexts
      • Low Public Exponent
      • Low Private Exponent
    • ECC
    • Digital Signature
    • JWT
    • PRNG
    • SSL/TLS
    • Research
      • βœ…Lattice-based Cryptography (Lattice)
      • Elliptic Curve Cryptography (ECC)
      • Oblivious Transfer (OT)
      • Secure Multi-party Computation (MPC)
      • Learning with Error (LWE)
      • Fully Homomorphic Encryption (FHE)
      • Zero Knowledge Proof (ZKP)
      • Oblivious RAM (ORAM)
  • Computer Science
    • Linux
      • Setup
      • curl
      • Hard Link vs. Symlink
      • Man Page
      • /dev/null
    • Python
      • New Features
      • Operators, Expressions, and Data Manipulation
      • Program Structure and Control Flow
      • Objects, Types, and Protocols
      • Functions 101
      • Generators
      • Classes and Object-Oriented Programming
      • Memory Management
      • Concurrency and Parallelism
        • Multithreading and Thread Safety
        • Asynchronization
        • Multiprocessing
        • Global Interpreter Lock (GIL)
      • Built-in Functions and Standard Library
        • import collections
        • import itertools
        • import sys
        • import re
        • import pickle
        • import json
      • Third-party Library
        • from pwn import *
        • import requests
        • from bs4 import BeautifulSoup
        • from scapy.all import *
        • py2exe
    • HTML, CSS, JavaScript, and React
      • HTML
      • CSS
      • JavaScript
        • var vs. let
        • Objects
        • Arrays
        • Functions
        • Modules
        • Asynchronous JavaScript
      • React
    • Data Structures and Algorithms
      • Binary Search
    • The Linux Programming Interface
      • Processes
        • Memory Allocation
        • The Process API
        • Process Creation
        • Process Termination
        • Monitoring Child Processes
        • Program Execution
      • Signals
      • Threads
        • Thread Synchronization
        • Thread Safety and Pre-Thread Storage
      • IPC
        • Pipes and FIFOs
        • Memory Mappings
        • Virtual Memory Operations
      • Sockets
    • Computer Systems
      • Hexadecimal
      • Signedness
      • Registers
      • Instructions
      • Syscall
      • Process Memory
      • Stack Frame
      • Preemptive Multitasking
      • IPC
      • Threads
    • Databases
      • MySQL
        • Basic Syntax
        • Data Types
        • Modifying Tables
        • Duplicating and Deleting
        • SELECT
        • Transaction
      • GraphQL
    • Distributed Systems
      • Introduction
        • What is a Distributed System?
        • Design Goals
        • Scaling Techniques
        • Types of Distributed Systems
      • Architecture
        • System Architectures
        • Example Architectures
      • Communication
        • Foundations
        • Remote Procedure Call
        • Message-oriented Communication
      • Coordination
        • Clock Synchronization
        • Logical Clock
      • Consistency and Replication
        • Introduction
        • Data-centric Consistency
        • Client-centric Consistency
    • Static Analysis
      • Intermediate Representation
      • Data Flow Analysis
      • Interprocedural Analysis
      • Pointer Analysis
      • Static Analysis for Security
      • Datalog-Based Program Analysis
      • Soundness and Soundiness
      • CFL-Reachability and IFDS
  • Web
    • βœ…Prerequisites
      • OWASP Top 10
        • 1. Broken Access Control
        • 2. Cryptographic Failures
        • 3. Injection
        • 4. Insecure Design
        • 5. Security Misconfiguration
        • 6. Vulnerable and Outdated Components
        • 7. Identification and Authentication Failures
        • 8. Software and Data Integrity Failures
        • 9. Security Logging and Monitoring Failures
        • 10. SSRF
      • HTTP
        • HTTP Status Codes
        • HTTP Headers
      • Burp Suite
        • Burp Intruder
        • Burp Extender
        • Burp Collaborator
      • Information Gathering
        • DNS
        • Git
        • Editor
        • Server
      • Bug Bounty Report Writing
    • File Upload
      • Webshell
      • IIS, Nginx, and Apache Vulnerabilities
      • .htaccess (Apache) / web.config (IIS)
      • Alternate Data Stream
      • Code Review: bWAPP Unrestricted File Upload
    • SQL Injection (SQLi)
      • Cheat Sheet
      • UNION Attacks
      • Examining the Database
      • Blind SQL Injection
      • WAF Bypass
      • Out-Of-Band (OOB)
      • Webshell and UDF
      • sqlmap
        • Code Review: Initialization
        • Code Review: tamper
    • Cross-Site Scripting (XSS)
      • Cheat Sheet
      • Reflected XSS
      • Stored XSS
      • DOM-Based XSS
      • XSS Contexts
      • CSP
    • CSRF and SSRF
      • Client-Side Request Forgery (CSRF)
        • XSS vs. CSRF
        • CSRF Tokens and SameSite Cookies
      • Server-Side Request Forgery (SSRF)
        • Attacks
        • Bypassing Restrictions
        • SSRF + Redis
    • XML External Entities (XXE)
    • Insecure Deserialization
      • Python Deserialization
      • PHP Deserialization
      • Java Deserialization
        • Shiro
        • FastJSON
        • WebLogic
    • HTTP Request Smuggling
    • OS Command Injection
      • Whitespace Bypass
      • Blacklist Bypass
      • Blind OS Command Injection
      • Lab 1: HITCON 2015 BabyFirst
      • Lab 2: HITCON 2017 BabyFirst Revenge
      • Lab 3: HITCON 2017 BabyFirst Revenge v2
    • βœ…Directory Traversal
    • HTTP Parameter Pollution
    • Server-Side Template Injection (SSTI)
    • LDAP Injection
    • Redis
      • Authentication
      • RCE
      • Mitigations
  • Pwn
    • Linux Exploitation
      • Protections
      • Shellcoding
        • Calling Convention
        • Null-free
        • Reverse Shell
        • ORW
      • ROP
        • Stack Alignment
        • ret2text
        • ret2syscall
        • ret2libc
        • ret2csu
        • BROP
        • SROP
        • Stack Pivot
      • ptmalloc
        • chunks
        • malloc() and free()
        • bins
        • tcache
      • UAF
      • Race Conditions
        • TOCTTOU
        • Dirty Cow
        • Meltdown
        • Spectre
      • Kernel
      • Appendix: Tools
        • socat
        • LibcSearcher-ng
        • OneGadget
    • Windows Exploitation
      • Classic
      • SEH
      • Egghunting
      • Unicode
      • Shellcoding
      • ROP
      • Appendix: Tools
        • ImmunityDbg
        • Mona.py
    • Fuzzing
      • AFL++
        • Quickstart
        • Instrumentation
        • ASAN
        • Code Coverage
        • Dictionary
        • Parallelization
        • Partial Instrumentation
        • QEMU Mode
        • afl-libprotobuf-mutator
      • WinAFL
      • Fuzzilli
  • Reverse
    • Bytecode
      • Python Bytecode
    • πŸ‘‘Z3 solver
    • angr
      • angr Template
Powered by GitBook
On this page

Was this helpful?

  1. Web3 Security Research
  2. Secureum
  3. Epoch 0
  4. Slot 3: Solidity 201

Quiz

PreviousOpenZeppelin - Proxy Upgrade PatternNextSlot 4: Pitfalls and Best Practices 101

Last updated 2 years ago

Was this helpful?

Q1 Which of the following is/are true about abstract contracts and interfaces?

Comment:

Note that A isn't necessarily correct since abstract classes can have all functions defined.

Abstract Contracts: Contracts need to be marked as abstract when at least one of their functions is not implemented. They use the abstract keyword.

Interfaces: They cannot have any functions implemented.

Virtual Functions: Functions without implementation have to be marked virtual outside of interfaces. In interfaces, all functions are automatically considered virtual. Functions with private visibility cannot be virtual.

Q2 Libraries are contracts

Comment:

Libraries: They are deployed only once at a specific address and their code is reused using the DELEGATECALL opcode. This means that if library functions are called, their code is executed in the context of the calling contract. They use the library keyword.

Library Restrictions: In comparison to contracts, libraries are restricted in the following ways: They cannot have state variables, they cannot inherit nor be inherited, they cannot receive Ether.

Library functions can only be called directly (i.e. without the use of DELEGATECALL) if they do not modify the state (i.e. if they are view or pure functions), because libraries are assumed to be stateless

Q3 Storage layout

Q4 For contract A {uint256 i; bool b1; bool b2; address a1;} the number of storage slots used is

Q5 Which of the following is/are generally true about storage layouts?

Q6 EVM memory

Q7 EVM inline assembly has

Comment:

Inline Assembly: Inline assembly is a way to access the Ethereum Virtual Machine at a low level. This bypasses several important safety features and checks of Solidity. You should only use it for tasks that need it, and only if you are confident with using it. The language used for inline assembly in Solidity is called Yul.

Inline Assembly Access to External Variables, Functions and Libraries: You can access Solidity variables and other identifiers by using their name. Local variables of value type are directly usable in inline assembly. Local variables that refer to memory/calldata evaluate to the address of the variable in memory/calldata and not the value itself [...]

Q8 Zero address check is typically recommended because

Q9 ERC20 transferFrom(address sender, address recipient, uint256 amount) (that follows the ERC20 spec strictly)

Q10 OpenZeppelin SafeERC20 is generally considered safer to use than ERC20 because

Q11 OpenZeppelin ERC20Pausable

Q12 OpenZeppelin ERC721

Comment:

Not C, since approval is not susceptible since approval can only given or taken away for a single token, so changing approval doesn't allow stealing more than was already approved.

OpenZeppelin ERC721: Implements the popular ERC721 Non-Fungible Token Standard.

safeTransferFrom(..): Safely transfers tokenId token from from to to, checking first that contract recipients are aware of the ERC721 protocol to prevent tokens from being forever locked. Requirements: 1) from cannot be the zero address [...]

setApprovalForAll(address operator, bool _approved): Approve or remove operator as an operator for the caller. Operators can call transferFrom or safeTransferFrom for any token owned by the caller.

Q13 ERC777 may be considered as an improved version of ERC20 because

Comment:

OpenZeppelin ERC777: Like ERC20, ERC777 is a standard for fungible tokens with improvements such as getting rid of the confusion around decimals, minting and burning with proper events, among others, but its killer feature is receive hooks. [...] A hook is simply a function in a contract that is called when tokens are sent to it, meaning accounts and contracts can react to receiving tokens. This enables a lot of interesting use cases, including atomic purchases using tokens (no need to do approve and transferFrom in two separate transactions), rejecting reception of tokens (by reverting on the hook call), redirecting the received tokens to other addresses, among many others. Furthermore, since contracts are required to implement these hooks in order to receive tokens, no tokens can get stuck in a contract that is unaware of the ERC777 protocol, as has happened countless times when using ERC20s.

Q14 The OpenZeppelin library that provides onlyOwner modifier

Q15 OpenZeppelin’s (role-based) AccessControl library

Q16 If OpenZeppelin’s isContract(address) returns false for an address then

Q17 CREATE2

Q18 OpenZeppelin ECDSA

Comment:

OpenZeppelin ECDSA: provides functions for recovering and managing Ethereum account ECDSA signatures. These are often generated via web3.eth.sign, and are a 65 byte array (of type bytes in Solidity) arranged the following way: [[v (1)], [r (32)], [s (32)]]. The data signer can be recovered with ECDSA.recover, and its address compared to verify the signature. Most wallets will hash the data to sign and add the prefix '\x19Ethereum Signed Message:\n', so when attempting to recover the signer of an Ethereum signed message hash, you’ll want to use toEthSignedMessageHash.

Externally Owned Accounts (EOA) can sign messages with their associated private keys, but currently contracts cannot.

Q19 OpenZeppelin SafeMath

Q20 OpenZeppelin’s proxy implementations

Q21 Proxied contracts

Q22 Dappsys provides

Comment:

Dappsys DSProxy: implements a proxy deployed as a standalone contract which can then be used by the owner to execute code.

Dappsys DSMath: provides arithmetic functions for the common numerical primitive types of Solidity. You can safely add, subtract, multiply, and divide uint numbers without fear of integer overflow. You can also find the minimum and maximum of two numbers. Additionally, this package provides arithmetic functions for two new higher level numerical concepts called wad (18 decimals) and ray (27 decimals). These are used to represent fixed-point decimal numbers. A wad is a decimal number with 18 digits of precision and a ray is a decimal number with 27 digits of precision.

Dappsys DSAuth: Provides a flexible and updatable auth pattern which is completely separate from application logic.

Q23 WETH is

Comment:

WETH: WETH stands for Wrapped Ether. For protocols that work with ERC-20 tokens but also need to handle Ether, WETH contracts allow converting Ether to its ERC-20 equivalent WETH (called wrapping) and vice-versa (called unwrapping). WETH can be created by sending ether to a WETH smart contract where the Ether is stored and in turn receiving the WETH ERC-20 token at a 1:1 ratio. This WETH can be sent back to the same smart contract to be β€œunwrapped” i.e. redeemed back for the original Ether at a 1:1 ratio. The most widely used WETH contract is WETH9 which holds more than 7 million Ether for now.

Q24 Name collision error with inheritance happens when the following pairs have the same name within a contract

Q25 Which of the following is/are not allowed?

Q26 Solidity supports

Q27 Which of the following EVM instruction(s) do(es) not touch EVM storage?

Q28 Which of the following is/are true about Solidity compiler 0.8.0?

Comment:

ABI coder v2 is activated by default. You can choose to use the old behaviour using pragma abicoder v1;. The pragma pragma experimental ABIEncoderV2; is still valid, but it is deprecated and has no effect. If you want to be explicit, please use pragma abicoder v2; instead.

Arithmetic operations revert on underflow and overflow. You can use unchecked to use the previous wrapping behaviour.

Failing assertions and other internal checks like division by zero or arithmetic overflow do not use the invalid opcode but instead the revert opcode. More specifically, they will use error data equal to a function call to Panic(uint256) with an error code specific to the circumstances. This will save gas on errors while it still allows static analysis tools to distinguish these situations from a revert on invalid input, like a failing require.

Exponentiation is right associative, i.e., the expression a**b**c is parsed as a**(b**c). Before 0.8.0, it was parsed as (a**b)**c. This is the common way to parse the exponentiation operator.

Q29 OpenZeppelin SafeCast

Comment:

OpenZeppelin SafeCast: Wrappers over Solidity's uintXX/intXX casting operators with added overflow checks. Downcasting from uint256/int256 in Solidity does not revert on overflow. This can easily result in undesired exploitation or bugs, since developers usually assume that overflows raise errors. `SafeCast` restores this intuition by reverting the transaction when such an operation overflows.

Q30 OpenZeppelin’s ReentrancyGuard library mitigates reentrancy risk in a contract

Q31 Assuming all contracts C1, C2 and C3 define explicit constructors in contract C1 is C2, C3 {…} and both C2 and C3 don’t inherit contracts, the number & order of constructor(s) executed is/are

Q32 Which of the following is/are true for a function f that has a modifier m?

from point 103.1 of

from point 103.2 of

from point 108 of

from point 103.3 of

from point 113 of

from point 113.6 of

from point 132 of

from point 133 of

from point 151 of

from point 151.4 of

from point 151.7 of

from point 152 of

See the

from point 166 of

from point 168.1 of

from point 193 of

from point 194 of

from point 195 of

from point 198 of

from Solidity v0.8.0 Breaking Semantic Changes, point 142.2 of

from Solidity v0.8.0 Breaking Semantic Changes, point 142.1 of

from Solidity v0.8.0 Breaking Semantic Changes, point 142.4 of

from Solidity v0.8.0 Breaking Semantic Changes, point 142.3 of

from point 177 of

βœ…
βœ…
βœ…
βœ…
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
source code on GitHub
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Solidity 201 - by Secureum
Secureum Bootcamp Solidity 201 Quiz β€’ Ventral DigitalVentral Digital
Slot 3 Quiz
Logo