An elliptic curve is a plane curve defined by an equation of the form:
y2=x3+ax+b
after a linear change of variables (a and b are real numbers). This type of equation is called a Weierstrass equation.
The definition of elliptic curve also requires that the curve is non-singular. Geometrically, this means that the graph has no cusps, self-intersections, or isolated points. Algebraically, this holds if and only if the discriminant:
Δ=−16(4a3+27b2)
is not equal to zero. (Although the factor −16 is irrelevant to whether or not the curve is non-singular, this definition of the discriminant is useful in a more advanced study of elliptic curves.)
The (real) graph of a non-singular curve has two components if its discriminant is positive, and one component if it is negative. For example, in the graphs shown in figure below, the discriminant in the first case is 64, and in the second case is −368:
Graphs of curves y^2 = x^3 − x and y^2 = x^3 − x + 1
#!/usr/bin/env python3
from Crypto.Util.number import inverse
#--------Data--------#
a = 497
b = 1768
p = 9739
P = (493, 5564)
Q = (1539, 4742)
R = (4403,5202)
#--------Addition--------#
def point_addition(P, Q):
# Define zero
O = (0, 0)
# If P = O, then P + Q = Q
if P == O:
return Q
# If Q = O, then P + Q = P
if Q == O:
return P
# Otherwise, write P = (x1, y1) and Q = (x2, y2)
x1, y1 = P[0], P[1]
x2, y2 = Q[0], Q[1]
# If x1 = x2 and y1 = -y2, then P + Q = O
if x1 == x2 and y1 == -y2:
return O
# Otherwise, if P ≠ Q: λ = (y2 - y1) / (x2 - x1)
if P != Q:
lam = ((y2 - y1) * inverse(x2 - x1, p)) % p
# If P = Q: λ = (3 * x1**2 + a) / 2 * y1
else:
lam = ((3 * x1**2 + a) * inverse(2 * y1, p)) % p
# x3 = λ**2 - x1 - x2, y3 = λ *( x1 - x3) - y1
x3 = (lam**2 - x1 - x2) % p
y3 = (lam * (x1 - x3) - y1) % p
# P + Q = (x3, y3)
summation = (x3, y3)
return summation
#--------Testing--------#
# X = (5274, 2841)
# Y = (8669, 740)
# print(point_addition(X, Y))
# print(point_addition(X, X))
# S = P + P + Q + R
S = point_addition(point_addition(point_addition(P, P), Q), R)
print(S)
#!/usr/bin/env python3
from Crypto.Util.number import inverse
#--------Data--------#
a = 497
b = 1768
p = 9739
P = (2339, 2213)
#--------Functions--------#
def point_addition(P, Q):
# Define zero
O = (0, 0)
# If P = O, then P + Q = Q
if P == O:
return Q
# If Q = O, then P + Q = P
if Q == O:
return P
# Otherwise, write P = (x1, y1) and Q = (x2, y2)
x1, y1 = P[0], P[1]
x2, y2 = Q[0], Q[1]
# If x1 = x2 and y1 = -y2, then P + Q = O
if x1 == x2 and y1 == -y2:
return O
# Otherwise, if P ≠ Q: λ = (y2 - y1) / (x2 - x1)
if P != Q:
lam = ((y2 - y1) * inverse(x2 - x1, p)) % p
# If P = Q: λ = (3 * x1**2 + a) / 2 * y1
else:
lam = ((3 * x1**2 + a) * inverse(2 * y1, p)) % p
# x3 = λ**2 - x1 - x2, y3 = λ *( x1 - x3) - y1
x3 = (lam**2 - x1 - x2) % p
y3 = (lam * (x1 - x3) - y1) % p
# P + Q = (x3, y3)
summation = (x3, y3)
return summation
def scalar_multiplication(n, P):
# Define zero
O = (0, 0)
# Set Q = P and R = O
Q, R = P, O
while n > 0:
# If n ≡ 1 mod 2, set R = R + Q
if n % 2 == 1:
R = point_addition(R, Q)
# Set Q = 2 Q and n = ⌊n/2⌋.
Q = point_addition(Q, Q)
n //= 2
return R
#--------Testing--------#
# X = (5323, 5438)
# print(scalar_multiplication(1337, X))
# Q = 7863 P
print(scalar_multiplication(7863, P))
#!/usr/bin/env python3
from Crypto.Util.number import inverse
from hashlib import sha1
#--------Data--------#
a = 497
b = 1768
p = 9739
G = (1804,5368)
Q_A = (815, 3190)
n_B = 1829
#--------Functions--------#
def point_addition(P, Q):
# Define zero
O = (0, 0)
# If P = O, then P + Q = Q
if P == O:
return Q
# If Q = O, then P + Q = P
if Q == O:
return P
# Otherwise, write P = (x1, y1) and Q = (x2, y2)
x1, y1 = P[0], P[1]
x2, y2 = Q[0], Q[1]
# If x1 = x2 and y1 = -y2, then P + Q = O
if x1 == x2 and y1 == -y2:
return O
# Otherwise, if P ≠ Q: λ = (y2 - y1) / (x2 - x1)
if P != Q:
lam = ((y2 - y1) * inverse(x2 - x1, p)) % p
# If P = Q: λ = (3 * x1**2 + a) / 2 * y1
else:
lam = ((3 * x1**2 + a) * inverse(2 * y1, p)) % p
# x3 = λ**2 - x1 - x2, y3 = λ *( x1 - x3) - y1
x3 = (lam**2 - x1 - x2) % p
y3 = (lam * (x1 - x3) - y1) % p
# P + Q = (x3, y3)
summation = (x3, y3)
return summation
def scalar_multiplication(n, P):
# Define zero
O = (0, 0)
# Set Q = P and R = O
Q, R = P, O
# Loop while n > 0
while n > 0:
# If n ≡ 1 mod 2, set R = R + Q
if n % 2 == 1:
R = point_addition(R, Q)
# Set Q = 2 Q and n = ⌊n/2⌋.
Q = point_addition(Q, Q)
n //= 2
return R
#--------ECDH--------#
S = scalar_multiplication(n_B, Q_A)
key = sha1(str(S[0]).encode()).hexdigest()
print(key)