ECC

Elliptic Curve Cryptography

Elliptic Curve

An elliptic curve is a plane curve defined by an equation of the form:

y2=x3+ax+by^{2}=x^{3}+ax+b

after a linear change of variables (aa and bb are real numbers). This type of equation is called a Weierstrass equation.

The definition of elliptic curve also requires that the curve is non-singular. Geometrically, this means that the graph has no cusps, self-intersections, or isolated points. Algebraically, this holds if and only if the discriminant:

Δ=16(4a3+27b2)\Delta =-16(4a^{3}+27b^{2})

is not equal to zero. (Although the factor −16 is irrelevant to whether or not the curve is non-singular, this definition of the discriminant is useful in a more advanced study of elliptic curves.)

The (real) graph of a non-singular curve has two components if its discriminant is positive, and one component if it is negative. For example, in the graphs shown in figure below, the discriminant in the first case is 64, and in the second case is −368:

Arithmetics on Elliptic Curves

Point Negation

Algorithm

The rule is: if P=(xP,yP)P = (x_P,y_P), then P+(xP,xP+yP)=OP + (x_P, x_P+y_P) = O. In other word, P=(xP,xP+yP)-P = (x_P, x_P+y_P).

Implementation

In this challenge we are given P=(8045,6936)P = (8045, 6936), hence Q=P=(8045,(8045+6936)mod9739)=(8045,2803)Q = -P = (8045, (8045 + 6936) \mod 9739) = (8045, 2803)

Point Addition

Algorithm

  1. If P=OP = O, then P+Q=QP + Q = Q.

  2. Otherwise, if Q=OQ = O, then P+Q=PP + Q = P.

  3. Otherwise, write P=(x1,y1)P = (x_1, y_1) and Q=(x2,y2)Q = (x_2, y_2).

  4. If x1=x2x_1 = x_2 and y1=y2y_1 = −y_2, then P+Q=OP + Q = O.

  5. Otherwise:

    • if PQP \neq Q: λ=(y2y1)/(x2x1)\lambda = (y_2 - y_1) / (x_2 - x_1)

    • if P=QP = Q: λ=(3x12+a)/2y1\lambda = (3x_1^2 + a) / 2y_1

  6. x3=λ2x1x2x_3 = \lambda_2 − x_1 − x2 and y3=λ(x1x3)y1y_3 = \lambda(x_1 − x_3) − y_1

  7. P+Q=(x3,y3)P + Q = (x_3, y_3)

Implementation

#!/usr/bin/env python3
from Crypto.Util.number import inverse

#--------Data--------#

a = 497
b = 1768
p = 9739

P = (493, 5564)
Q = (1539, 4742) 
R = (4403,5202)

#--------Addition--------#

def point_addition(P, Q):
    # Define zero
    O = (0, 0)

    # If P = O, then P + Q = Q
    if P == O:
        return Q
    # If Q = O, then P + Q = P
    if Q == O:
        return P

    # Otherwise, write P = (x1, y1) and Q = (x2, y2)
    x1, y1 = P[0], P[1]
    x2, y2 = Q[0], Q[1]

    # If x1 = x2 and y1 = -y2, then P + Q = O
    if x1 == x2 and y1 == -y2:
        return O

    # Otherwise, if P ≠ Q: λ = (y2 - y1) / (x2 - x1)
    if P != Q:
        lam = ((y2 - y1) * inverse(x2 - x1, p)) % p
    # If P = Q: λ = (3 * x1**2 + a) / 2 * y1
    else:
        lam = ((3 * x1**2 + a) * inverse(2 * y1, p)) % p

    # x3 = λ**2 - x1 - x2, y3 = λ *( x1 - x3) - y1
    x3 = (lam**2 - x1 - x2) % p
    y3 = (lam * (x1 - x3) - y1) % p

    # P + Q = (x3, y3)
    summation = (x3, y3)

    return summation

#--------Testing--------#

# X = (5274, 2841) 
# Y = (8669, 740)
# print(point_addition(X, Y))
# print(point_addition(X, X))

# S = P + P + Q + R
S = point_addition(point_addition(point_addition(P, P), Q), R)
print(S)

Scalar Multiplication

Algorithm

Input: PP in E(Fp)E(F_p) and an integer n>0n > 0.

  1. Set Q=PQ = P and R=OR = O.

  2. Loop while n>0n > 0.

    • If n1mod2n \equiv 1 \mod 2, set R=R+QR = R + Q.

    • Set Q=2QQ = 2Q and n=n/2n = \left\lfloor n/2 \right\rfloor.

    • If n>0n > 0, continue with loop at Step 2.

  3. Return the point RR, which equals nPnP.

Implementation

#!/usr/bin/env python3
from Crypto.Util.number import inverse

#--------Data--------#

a = 497
b = 1768
p = 9739

P = (2339, 2213)

#--------Functions--------#

def point_addition(P, Q):
    # Define zero
    O = (0, 0)

    # If P = O, then P + Q = Q
    if P == O:
        return Q
    # If Q = O, then P + Q = P
    if Q == O:
        return P

    # Otherwise, write P = (x1, y1) and Q = (x2, y2)
    x1, y1 = P[0], P[1]
    x2, y2 = Q[0], Q[1]

    # If x1 = x2 and y1 = -y2, then P + Q = O
    if x1 == x2 and y1 == -y2:
        return O

    # Otherwise, if P ≠ Q: λ = (y2 - y1) / (x2 - x1)
    if P != Q:
        lam = ((y2 - y1) * inverse(x2 - x1, p)) % p
    # If P = Q: λ = (3 * x1**2 + a) / 2 * y1
    else:
        lam = ((3 * x1**2 + a) * inverse(2 * y1, p)) % p

    # x3 = λ**2 - x1 - x2, y3 = λ *( x1 - x3) - y1
    x3 = (lam**2 - x1 - x2) % p
    y3 = (lam * (x1 - x3) - y1) % p

    # P + Q = (x3, y3)
    summation = (x3, y3)

    return summation

def scalar_multiplication(n, P):
    # Define zero
    O = (0, 0)
    # Set Q = P and R = O
    Q, R = P, O

    while n > 0:
        # If n ≡ 1 mod 2, set R = R + Q
        if n % 2 == 1:
            R = point_addition(R, Q)
        # Set Q = 2 Q and n = ⌊n/2⌋.
        Q = point_addition(Q, Q)
        n //= 2

    return R

#--------Testing--------#

# X = (5323, 5438)
# print(scalar_multiplication(1337, X))

# Q = 7863 P
print(scalar_multiplication(7863, P))

Curves and Logs

Algorithm

  1. Alice and Bob agree on a curve EE, a prime pp and a generator point GG.

  2. Alice generates a secret random integer nAn_A and calculates QA=nAGQ_A = n_AG.

  3. Bob generates a secret random integer nBn_B and calculates QB=nBGQ_B = n_BG.

  4. Alice sends Bob QAQ_A, and Bob sends Alice $$Q_B$$. Due to the hardness of ECDLP, an onlooker Eve is unable to calculatenA/B n{A/B} in reasonable time.

  5. Alice then calculates nAQBn_AQ_B, and Bob calculates nBQAn_BQ_A.

Due to the associativity of scalar multiplication, S=nAQB=nBQAS = n_AQ_B = n_BQ_A. Alice and Bob can use SS as their shared secret.

Implementation

#!/usr/bin/env python3
from Crypto.Util.number import inverse
from hashlib import sha1

#--------Data--------#

a = 497
b = 1768
p = 9739

G = (1804,5368)
Q_A = (815, 3190)
n_B = 1829

#--------Functions--------#

def point_addition(P, Q):
    # Define zero
    O = (0, 0)

    # If P = O, then P + Q = Q
    if P == O:
        return Q
    # If Q = O, then P + Q = P
    if Q == O:
        return P

    # Otherwise, write P = (x1, y1) and Q = (x2, y2)
    x1, y1 = P[0], P[1]
    x2, y2 = Q[0], Q[1]

    # If x1 = x2 and y1 = -y2, then P + Q = O
    if x1 == x2 and y1 == -y2:
        return O

    # Otherwise, if P ≠ Q: λ = (y2 - y1) / (x2 - x1)
    if P != Q:
        lam = ((y2 - y1) * inverse(x2 - x1, p)) % p
    # If P = Q: λ = (3 * x1**2 + a) / 2 * y1
    else:
        lam = ((3 * x1**2 + a) * inverse(2 * y1, p)) % p

    # x3 = λ**2 - x1 - x2, y3 = λ *( x1 - x3) - y1
    x3 = (lam**2 - x1 - x2) % p
    y3 = (lam * (x1 - x3) - y1) % p

    # P + Q = (x3, y3)
    summation = (x3, y3)

    return summation

def scalar_multiplication(n, P):
    # Define zero
    O = (0, 0)
    # Set Q = P and R = O
    Q, R = P, O

    # Loop while n > 0
    while n > 0:
        # If n ≡ 1 mod 2, set R = R + Q
        if n % 2 == 1:
            R = point_addition(R, Q)
        # Set Q = 2 Q and n = ⌊n/2⌋.
        Q = point_addition(Q, Q)
        n //= 2

    return R

#--------ECDH--------#

S = scalar_multiplication(n_B, Q_A)
key = sha1(str(S[0]).encode()).hexdigest()

print(key)

Lab

Reference

Last updated